(1)端侧与云侧的融合与协作是大势所趋
中国物联网市场在未来三年预计将保持 20%以上的增长速度,在 2021年达到 26,251 亿元的市场规模,而物联网应用的渗透将带动对物联网芯片的需求。
据 MarketsandMarkets 预计,2020 年全球物联网芯片市场规模将达 109.41 亿美元,对云侧和端侧的要求将更加全面,在云侧寻求算力、响应时间、成本等因素的最优配置,在端侧提升算力和让数据尽可能实现本地处理。一方面,物联网将有更多的应用场景对延时更为敏感,例如智能家居、智能工业、智能医疗需要端侧设备的实时响应。另一方面,5G 时代的无线网络将具有更低的时延性,大规模的数据流动将增加传输和云端的压力,这同样需要云侧和端侧的密切配合。
目前云侧和端侧的配合主要体现在云端训练神经网络,再由终端或边缘端设备进行推理。未来,随着端侧设备的进一步迭代,设备能负载更多的计算分析工作,甚至可以承担部分的训练过程。另一方面,计算力的前置是行业发展的重要趋势,未来云侧的边界也会逐渐向终端和数据源头推进,整合云侧和端侧的架构,将 AI 处理分布在各个网络设备中。
随着云侧和端侧的技术走向成熟,其协作的适应性和灵活性将成为下一阶段的竞争重点。未来云端和终端设备及其连接网络可能会构成一个庞大的 AI 处理网络,云端能够实时控制、调整终端的算法,重新定义、迭代硬件;而终端也能将数据及时反哺给云端进行自适应优化;训练和推理的相互协作、互补整合也将成为技术的一大探索方向,形成完整协同的智能生态。
(2)视觉人工智能行业的竞争维度逐步从单一技术领先性竞争转向综合服务能力竞争
AI 芯片与算法都是人工智能行业的关键底层技术,两者的发展彼此交互、相互融合、相互促进,共同助推终端智能和 AI 生态的发展。以安防行业为例,前端采集设备和云端软件的协调、优化能有效提升整体方案运行的稳定性和效率。
随着 AI 算法技术的不断进步,视觉人工智能企业技术成熟度均已达到较高水平,同行业企业间的技术差异正在逐渐缩小,行业技术进步所带来的边际改善效应正在衰减。在更多场景下,竞争者之间的技术水平都已经可以较好地满足用户的需求。故而,视觉人工智能领先企业间的竞争正从过往的以技术领先性为核心的技术研发竞争逐步转向以用户需求理解和应用场景落地为核心的技术应用竞争。
上述变化也对企业的技术研发能力和综合服务能力提出了新的要求,过去在产业链单一环节的专业化优势正趋于弱化,而如何基于场景需要,打通底层的算法、芯片等核心技术,如何为客户提供全面、综合、成本更优、体验更好的方案和服务正成为未来行业竞争的关键因素。
(3)核心城市日渐成为视觉人工智能技术等 AI 技术创新和应用的重要载体和试验地
随着人工智能技术的发展和城市治理水平的内在需求趋强,城市日益成为人工智能技术创新融合应用的重要载体和试验地。在全球范围内,包括旧金山、纽约、伦敦、新加坡、东京、北京、上海、深圳等核心城市都在形成人工智能技术创新和应用的集聚。而中国政府正在大力推动的新型基础设施建设,核心城市也是建设的主战场和示范基地。
未来,能抢占核心城市市场的人工智能企业也将拥有更丰富的技术落地场景,进而拥有更强的竞争优势。视觉人工智能技术作为目前应用最成熟的 AI 技术之一,未来将不仅局限在与公共安全相关的领域,有望在城市的发展和治理中发挥更加重要的作用。