首 页
研究报告

医疗健康信息技术装备制造汽车及零部件文体教育现代服务业金融保险旅游酒店绿色环保能源电力化工新材料房地产建筑建材交通运输社消零售轻工业家电数码产品现代农业投资环境

产业规划

产业规划专题产业规划案例

可研报告

可研报告专题可研报告案例

商业计划书

商业计划书专题商业计划书案例

园区规划

园区规划专题园区规划案例

大健康

大健康专题大健康案例

行业新闻

产业新闻产业资讯产业投资产业数据产业科技产业政策

关于我们

公司简介发展历程品质保证公司新闻

当前位置:思瀚首页 >> 行业新闻 >>  产业政策

3D打印行业技术水平发展情况、未来发展趋势
思瀚产业研究院 铂力特    2023-04-18

3D 打印技术从诞生至今近 40 年,目前处于多技术路线共存的状态。根据中华人民共和国国家标准《增材制造术语》(GB∕T35351-2017),根据增材制造技术的成形原理,可以分成七种基本的增材制造工艺,具体分类情况、代表性工艺技术如下:

七种基本的增材制造工艺中,金属 3D 打印工艺原理主要为粉末床熔融和定向能量沉积两大类别,采用这两类工艺原理的金属 3D 打印技术都可以制造达到锻件标准的金属零件。

粉末床熔融技术的主要优点是:可以打印传统技术无法企及的极端复杂的结构(特别是复杂内腔结构)、制件尺寸精度高,这些优点开辟了金属结构件创新设计的无限可能性,提供了显著减重、高效换热、精确的密度和模量匹配等有效的新技术途径,为航空航天复杂构件、医疗植入体和随形冷却模具等开启了革命性进步的新方向,其零件力学性能超过铸件甚至部分零部件力学性能指标达到锻件标准,从而成为当今最广泛应用的金属 3D 打印技术,是近些年金属 3D 打印产值超高速发展的主要支撑技术。

其主要不足是打印效率稍低、难以打印 2 米以上尺度的大型零件、需要超细球形金属粉从而成本相对较高等。粉末床熔融技术非常适合航空航天小批量、定制化生产特点,能够解决其轻量化设计制造、功能化设计要求,且随着技术发展与成本控制,其未来必将能够实现大规模工业化生产。

定向能量沉积技术的主要优点是:很大的打印尺度范围、方便多材料打印、可以采用大功率激光器实现每小时公斤级的打印效率、非常适合于高性能成形与修复等;其主要不足是打印件的结构复杂性不够高、有较大的加工余量等。由于在同传统制造技术的竞争中还未形成像粉末床熔融技术那样显著的不可替代性,技术成熟度与设备自动化程度尚不如粉末床熔融技术高,因此推广应用的速度尚不及粉末床熔融技术。但是,该技术具有粉末床熔融技术难以实现的修复功能,能够修复航空发动机叶片等高附加值零部件,并且通过设备的集成能够适应大型零部件的原位修复,避免拆机、装机等停工损失。

为了获得更为广泛的应用,这两类主流金属 3D 打印技术都在努力向兼顾高性能、高精度、高效率、低成本、更大的尺寸范围和更广泛的材料适用性方向发展。

(1)粉末床熔融技术

金属增材制造中粉末床熔融技术主要分为激光选区熔化(SLM)和电子束选区熔化(EBSM)两类,其中激光选区熔化技术(SLM)是主流,有大量的设备生产和打印服务公司,占据了金属增材制造绝大部分市场份额,而且近期还在持续增加。

SLM 技术是采用激光有选择地分层熔化烧结固体粉末,在制造过程中,金属粉末加热到完全融化后成形。其工作原理为:被打印零部件提前在专业软件中添加工艺支撑与位置摆放,并被工艺软件离散成相同厚度的切片,工艺软件根据设定工艺参数进行打印路径规划。实际打印过程中,在基板上用刮刀铺上设定层厚的金属粉末,聚焦的激光在扫描振镜的控制下按照事先规划好的路径与工艺参数进行扫描,金属粉末在高能量激光的照射下发生熔化,快速凝固,形成冶金结合层。当一层打印任务结束后,基板下降一个切片层厚高度,刮刀继续进行粉末铺平,激光扫描加工,重复这样的过程直至整个零件打印结束。

①激光选区熔化成形设备工作原理图如下:

②该系列打印设备的主要优点为:

A、成形零件的质量较高,致密度近乎 100%,抗拉强度等机械性能指标优于铸件,可达到锻件水平。

B、高精度。成形过程分辨率高,尺寸精度高,零部件加工不受自身复杂结构限制,成形过程中产生的热量较少,零件很少发生扭曲变形。

C、可使用金属材料范围广泛。包括钛合金、铝合金、高温合金、铜合金、钴铬合金、不锈钢、高强钢、模具钢等。

D、与传统减材制造相比,可节约大量材料,对于较昂贵的金属材料而言,可大幅节约成本。

E、缩短复杂零部件交付时间,生产过程更加灵活并且可以随时修改数模,特别适用于产品生命周期较短的零部件。

由于能够实现较高的打印精度和足够的机械性能,SLM 技术可广泛应用于复杂形状的金属零件的批量生产,在航空航天及医疗植入体等领域具有广阔的应用前景。

(2)定向能量沉积技术

定向能量沉积技术是指利用聚焦热能熔化材料即熔即沉积的增材制造工艺,主要分为激光同步送粉技术和电子束熔丝沉积技术( EBDM:Electron Beam DirectManufacturing)两大类。其中激光同步送粉技术研究及应用较多。

同时,由于激光同步送粉技术是由许多大学和机构分别独立进行研究的,因此这一技术的名称繁多,其中最广为人知的名称为激光近净成形技术(LENS:Laser Engineered Net Shaping),其最早由美国 Sandia 国家实验室提出并进行研究;该技术也叫激光金属熔覆沉积技术(LMD:Laser Metal Deposition),而公司多称之为激光立体成形技术(LSF:Laser Solid Forming),下文统一称之为 LSF 技术。

LSF 技术的成形原理是:聚焦激光束在控制下,按照预先设定的路径,进行移动,移动的同时,粉末喷嘴将金属粉末直接输送到激光光斑在固态基板上形成的熔池,使之由点到线、由线到面的顺序凝固,从而完成一个层截面的打印工作。这样层层叠加,制造出接近实体模型的零部件实体。

①激光立体成形设备工作原理图如下:

激光立体成形设备的关键指标如下:

A、成形尺寸:其决定了能够最大成形的零部件尺寸或者可以修复的零部件最大尺寸。

B、激光功率:激光的最大功率决定了可以成形或者修复的最大效率,激光最小功率可以确定设备的修复精细程度。

C、氧含量:在成形或者修复过程中经常会采用一些活泼金属粉末,比如钛合金、高温合金等,这些材料在熔化过程中会与空气中的氧气进行反应,生成有害于材料力学性能的氧化物;同时氧气会使得未被烧结的粉末氧含量成分上升,造成粉末超标不能二次利用。

D、轴重复定位精度:在成形或者修复过程中,激光头的轨迹是靠 X、Y、Z 三轴的联动来保证的,因此三轴的定位精度对成形件或者修复件的最终尺寸、几何精度以及表面粗糙度具有重要影响。

②该系列打印设备的主要优点为:

A、成形零件性能优良,综合力学性能同锻件相当。

B、可在现有的零件上打印,该设备不仅能直接打印出三维金属零件,还能在已有零件上进行打印,例如在已磨损的零件上打印金属材料以修复磨损处,或与传统的机加工设备集成起来进行增材/减材复合成形。具有柔性化制造的特点,可以最大限度满足多种形状损伤部位的修复。修复后,零部件力学性能基本可达到新品水平,实现零部件高效率、低成本的再生制造。

C、具有更高的加工效率和更大的成形尺寸,实现无模具近终成形,极大的节省材料,降低成本。可以采用大功率(例如万瓦级)激光器实现每小时公斤级的打印效率,非常适合于大尺寸毛坯件制备或高性能成形修复包括现场修复等。

D、梯度材料。该系统可将多种不同的金属粉打印在一个零件上,以实现梯度功能或新型合金以满足特殊的需求,能根据零件的实际使用需要改变其各部分的成分和组织,实现零件各部分材质与性能的最佳搭配。

该系列设备解决了困扰航空航天领域重点型号的结构件、发动机零部件,以及煤炭、电力等领域重大装备受损零部件的修复再制造问题,可以进行大型钛合金等材料零件的一次整体成形及复杂高附加值的零件的无损修复,成形件的整体力学性能水平达到或超过锻件标准。公司该系列激光立体成形设备整体水平位于国内领先、国际先进水平。

(3)电弧熔丝增材制造

电弧增材制造技术(Wire andArcAdditive Manufacture, WAAM)是一种利用逐层熔覆原理,采用熔化极惰性气体保护焊(MIG)、钨极惰性气体保护焊(TIG)以及等离子体焊接电源(PAW)等产生的电弧为热源,以金属丝材为原材料,在程序的控制下,根据三维数字模型由线-面-体逐渐成形金属零件的先进数字化制造技术。

①电弧增材制造设备工作原理图如下:

此方法用低成本的电弧取代激光和电子束作为熔化金属的热源,从而形成一种成本极大降低的大尺寸高效率金属增材制造技术,其打印效率较高,成本低廉,很方便打印数米大小的零件,而且非常适合于激光熔覆技术难于制造的高反射性的铝合金。特别是由于同弧焊技术的兼容性好,弧焊专业人员较容易掌握这项技术。这项技术成为当前大尺寸、高效率、低成本金属 3D 打印技术发展最快的方向,并且正在迅速进入规模化的工业应用。

②该系列打印设备的主要优点为:

A、高效率,每小时的沉积效率可达几公斤-几十公斤;

B、低成本,原材料价格便宜,整体打印周期短;

C、柔性化,无需模具,自由度高,易于实现自动化、智能化控制;

D、响应速度快,特别适宜于快速研制与迭代,加快研发周期,适于小批量个性化定制;

E、其缺点是热输入累积较大,零件表面精度不高,需配合后续加工工艺实现零件的精度控制。

(4)金属增材制造行业技术未来发展趋势

金属增材制造技术的发展并不是孤立的,其涉及制造工艺、设备、材料、优化设计等各个方面,总的来说,为获得更为广泛的应用,金属增材制造技术都在努力向兼顾高性能、高精度、高效率、低成本、更大的加工尺寸范围和更广泛的材料适用性方向发展,其目的都是为了向直接制造最终功能零件发展。

①制造工艺方面

当前,金属增材制造工艺的发展,除了对现有较为成熟的粉末床熔融技术、定向能量沉积技术、电弧增材制造技术等结合实际工程化应用经验及材料、粉末、智能化控制软件等的技术发展克服缺陷提升优势外,金属增材制造工艺主要在以下方面进行拓展:

A、增减材复合制造技术。增材制造与传统的减材制造相融合,增材制造技术与机器人、数控机床、铸锻焊等多工艺技术相集成,从而提升增材制造技术的成形效率和精度,解决增材制造的复杂结构件难于进行后续机械加工的难题,特别是解决复杂内腔达不到非加工面要求的难题,助力企业实现柔性制造,赋予现有设备或生产线高柔性与高效率。

B、发展基于新工艺理论的全新的金属增材制造技术。粉末床熔融技术、定向能量沉积技术、电弧增材制造技术均是对金属材料直接烧结成形,而将有机粘结剂等其他材料与金属粉末结合起来,再通过烧结等辅助工艺进行成形的金属增材制造技术称之为“间接金属 3D 打印技术”。

②金属增材制造设备方面

金属增材制造设备是实现各种金属增材制造技术的重要载体,增材制造设备的发展在整个增材制造技术体系中占据非常重要的位置。总体来看,除了持续提升设备效率、打印精度和稳定性外,金属增材制造装备的主要发展方向为:

A、大型化。增材制造装备成形尺寸已经步入“米”级时代,增材制造装备大型化已成为发展趋势。

B、专业化。与大尺寸设备相比,针对不同应用领域的不同需求偏好,增材制造设备向更加专业化和精细化方向发展。

C、智能化。智能传感器、数字总线技术等智能部件融入增材制造装备,增材制造装备将更加智能化。

③金属增材制造原材料方面

随着金属 3D 打印产业化规模的扩大,市场上金属粉末材料种类偏少、品质偏低、专用化程度不高、供给不足的弊端也日益显现,因此金属 3D 打印专用材料的开发在未来的很长一段时间里将是重要的研究领域。另外,单一材料也在向复合材料发展,不仅赋予了材料多功能性特点,而且拓宽了增材制造技术的应用领域。

④优化设计方面

增材制造技术正在加速发展成为一种强大的生产技术。但是,在工业制造中应用该技术的主要障碍是目前绝大多数工业设计师对增材制造技术缺乏了解,产品设计思维被传统的等材或减材制造技术所束缚。因此,增材制造与优化设计的互动研究将进一步加强,拓扑优化设计、点阵结构设计、一体化结构设计等轻量化设计将更多的用于金属增材制造设计领域,同时结合软件技术发展,仿真技术将驱动设计的优化及实现打印前的质量控制。

(5)金属 3D 打印技术与传统精密加工技术的比较

金属 3D 打印技术并不是要取代传统加工制造技术,而是传统加工制造技术的重要补充。

目前金属 3D 打印技术在可加工材料、加工精度、表面粗糙度、加工效率等方面与传统的精密加工技术相比,还存在较大的差距,但是其全新的技术原理及制造方式,也有着传统精密加工所无法比拟的巨大优势,具体体现在:

①缩短新产品研发及实现周期。3D 打印工艺成形过程由三维模型直接驱动,无需模具、夹具等辅助工具,可以极大的降低产品的研制周期,并节约昂贵的模具生产费用,提高产品研发迭代速度。

②可高效成形更为复杂的结构。3D 打印的原理是将复杂的三维几何体剖分为二维的截面形状来叠层制造,故可以实现传统精密加工较难实现的复杂构件成形,提高零件成品率,同时提高产品质量。

③实现一体化、轻量化设计。金属3D打印技术的应用可以优化复杂零部件的结构,在保证性能的前提下,将复杂结构经变换重新设计成简单结构,从而起到减轻重量的效果,3D 打印技术也可实现构件一体化成形,从而提升产品的可靠性。

④材料利用率较高。与传统精密加工技术相比,金属3D打印技术可节约大量材料,特别是对较为昂贵的金属材料而言,可节约较大的成本。

⑤实现优良的力学性能。基于 3D 打印快速凝固的工艺特点,成形后的制件内部冶金质量均匀致密,无其他冶金缺陷;同时快速凝固的特点,使得材料内部组织为细小亚结构,成形零件可在不损失塑性的情况下使强度得到较大提高。

编辑:沈吟秋

来源: 思瀚产业研究院 铂力特

免责声明:
1.本站部分文章为转载,其目的在于传播更多信息,我们不对其准确性、完整性、及时性、有效性和适用性等任何的陈述和保证。本文仅代表作者本人观点,并不代表本网赞同其观点和对其真实性负责。
2.思瀚研究院一贯高度重视知识产权保护并遵守中国各项知识产权法律。如涉及文章内容、版权等问题,我们将及时沟通与处理。