首 页
研究报告

医疗健康信息技术装备制造汽车及零部件文体教育现代服务业金融保险旅游酒店绿色环保能源电力化工新材料房地产建筑建材交通运输社消零售轻工业家电数码产品现代农业投资环境

产业规划

产业规划专题产业规划案例

可研报告

可研报告专题可研报告案例

商业计划书

商业计划书专题商业计划书案例

园区规划

园区规划专题园区规划案例

大健康

大健康专题大健康案例

行业新闻

产业新闻产业资讯产业投资产业数据产业科技产业政策

关于我们

公司简介发展历程品质保证公司新闻

当前位置:思瀚首页 >> 行业新闻 >>  产业投资

算法模型持续迭代,AI行业快速发展
思瀚产业研究院    2024-11-11

基础的生成算法模型是驱动AI的关键

2014年,伊恩·古德费洛(lan Goodfellow)提出的生成对抗网络(Generative Adversarial Network, GAN)成为早期最为著名的生成模型。GAN使用合作的零和博弈框架来学习,被广泛用于生成图像、视频、语音和三维物体模型。随后,Transformer、基于流的生成模型(Flow-based models)、扩散模型(Diffusion Model)等深度学习的生成算法相继涌现。

Transformer模型是一种采用自注意力机制的深度学习模型,这一机制可按输入数据各部分的重要性分配权重,可用于自然语言处理(NLP)、计算机视觉(CV)领域应用,后来出现的BERT、GPT-3、laMDA等预训练模型都是基于Transformer模型建立的。

基础的生成算法模型是驱动AI的关键

通过梳理全球主流大语言模型(LLM)的发展脉络,2018年以来的GPT系列、LLaMA系列、BERT系列、Claude系列等多款大模型均发源 于 Transformer 架构。

预训练模型引发了AI技术能力的质变

预训练模型是为了完成特定任务基于大型数据集训练的深度学习模型,让AI模型的开发从手工作坊走向工厂模式,加速AI技术落地。2017年,Google颠覆性地提出了基于自注意力机制的神经网络结构——Transformer架构,奠定了大模型预训练算法架构的基础。2018年,OpenAI和Google分别发布了GPT-1与BERT大模型,意味着预训练大模型成为自然语言处理领域的主流。

预训练数据直接影响AI大模型性能

预训练数据从数据来源多样性、数据规模、数据质量三方面影响模型性能。以GPT模型为例,其架构从第1代到第4代均较为相似,而用来训练数据的数据规模和质量却有很大的提升,进而引发模型性能的飞跃。以吴恩达(Andrew Ng)为代表的学者观点认为,人工智能是以数据为中心的,而不是以模型为中心。“有标注的高质量数据才能释放人工智能的价值,如果业界将更多精力放在数据质量上,人工智能的发展会更快”。

为了追求更好的模型性能,模型参数规模也与训练数据量同步快速增长,模型参数量大约每18个月时间就会增长40倍。例如2016年最好的大模型ResNet-50参数量约为2000万,2020年的GPT-3模型参数量达1750亿,2023年的GPT-4参数规模则更加庞大。

市场规模

随着人工智能技术的不断发展,其应用场景日益丰富,各行各业所汇聚的庞大数据资源为技术的实际应用和持续完善提供了坚实基础。根据第三方咨询机构格物致胜的统计数据,2022年中国人工智能市场规模达到2058亿元,预计2023-2027年市场规模将保持28.2%的复合增长率,2027年中国人工智能市场规模将达到7119亿元。根据statista的统计数据,2023年全球人工智能市场规模达2079亿美元,预计2030年将增至18475亿美元。

更多行业研究分析请参考思瀚产业研究院官网,同时思瀚产业研究院亦提供行研报告、可研报告(立项审批备案、银行贷款、投资决策、集团上会)、产业规划、园区规划、商业计划书(股权融资、招商合资、内部决策)、专项调研、建筑设计、境外投资报告等相关咨询服务方案。

免责声明:
1.本站部分文章为转载,其目的在于传播更多信息,我们不对其准确性、完整性、及时性、有效性和适用性等任何的陈述和保证。本文仅代表作者本人观点,并不代表本网赞同其观点和对其真实性负责。
2.思瀚研究院一贯高度重视知识产权保护并遵守中国各项知识产权法律。如涉及文章内容、版权等问题,我们将及时沟通与处理。