(1)色谱技术原理
1903 年俄国化学家茨维特使用石油醚将植物中的绿叶色素进行溶解,然后使用玻璃柱将碳酸粉末进行填充,并将溶解后的绿叶色素通过玻璃柱,得到了不同颜色的绿叶色素谱带,他将这一过程命名为“色谱(Chromatography)”。其后,在 1941 年诺贝尔奖获得者 Matin 和 Synge 建立了液相色谱的分配理论,这一理论奠定了今后色谱技术发展的基础。
液相色谱技术是目前最为常见的色谱技术,是利用被分离物质在固定相和流动相中分配系数不同以使组分分离的方法。流动相作为载体,携带了待测的样品/混合组分进入固定相,固定相用来分离被测组分,当混合组分随着流动相从装有色谱填料的容器一头进入、向容器另外一端流动时,混合组分中各个成分物质因物理和化学性质不同,与色谱填料作用力不同,导致各组分物质在固定相中的迁移速度有差异,最终各组分按顺序从柱子另外一端流出,从而实现各组分分离的目的。
其中,固定相的选择对样品的分离起着重要作用,用作固定相的色谱填料是影响液相色谱性能的核心耗材。色谱填料是用于捕获和修饰单抗、抗体片段、疫苗和其他生物分子的介质,不同种类的色谱填料能够广泛用于多种样品类型的分析检测以及纯化分离,根据核酸、蛋白质、小分子和大分子的不同物理性质和化学性质,选择适合的色谱填料,能够实现从样品混合物中筛选目标样本的纯化目的。
(2)色谱技术分类
根据应用场景的不同,色谱产品可应用于分析色谱及工业纯化两大领域。
①分析色谱技术
分析色谱技术是一种超高效、高精细度、高准确率的分析技术,广泛应用于药物的分析检测和质量控制、中药复杂组分分析、医疗诊断、食品分析检测、农药残留物检测、水质和环境监测等领域。分析色谱技术的主要应用平台为高效液相色谱系统,分析色谱柱则是其中的核心部件,性能优异的色谱柱具备较高的稳定重复性和较长的使用寿命,在保证更好的分辨率和准确性的同时,可以节约分离时间和成本。
②工业纯化技术
工业纯化是指根据临床用药和制剂要求,用适宜的溶剂和方法,从原料中提取有效物质、除去杂质的过程。工业纯化色谱技术的主要应用平台为层析系统,工业纯化色谱填料(又称“层析介质”)是其中的核心耗材。作为生物药规模生产过程中下游纯化环节的关键材料,层析介质的需求量随着药物生产规模的放大而增加。